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What is a texture?

Texture is homogeneous and translation invariant

Possible texture definitions:
I Realisation of random field
I Texture elements placed according to rules
I Information that permits the human eye to

differentiate between image regions.
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Examples of textures – azimuth
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Examples of textures – declination
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Illumination

Illumination conditions are unknown.

Types of illumination variations:

our method .

I Illumination brightness

. . . . . . . . . . . . . . . . . . . invariant .

I Illumination direction

. . . . . . . . . . . . . . . . . . . . . . robust .

I Illumination spectrum

. . . . . . . . . . . . . . . . . . . not tested .
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Proposed method

1. Grey scale image
2. Image gradients
3. Gaussian pyramid with K levels
4. Modelling by a Markov random field (MRF) model
5. Estimated MRF model parameters are features
6. Feature vectors are compared in L1 norm
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CAR model

Yr = γZr + εr

r = (row, column) pixel multiindex
Zr = [Y T

r−i : ∀i ∈ Ir ]T data vector
Ir contextual causal or unilateral neighbourhood

γ = [A1, . . . ,Aη] unknown parameter matrix with diagonal
matrices Ai

εr white noise with zero mean and unknown covariance
matrix
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CAR model – parameter estimation

I Analytical recursive Bayesian estimation of γ

movement neigbourhood .
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GMRF model

Local condition density is Gaussian.
Ir non-causal symmetrical neighbour index set

The GMRF model has the form of CAR model with the
following noise correlation (diagonal σ):

E{εr ,iεr−s,j} =


σ2

j if (s) = (0,0) and i = j ,
− σ2

j as
j if (s) ∈ I j

r and i = j ,
0 otherwise.

σj ,as
j ∀s ∈ I j

r unknown parameters.

I Pseudo-likelihood estimation of γ.
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Illumination model
Lambertian law:

Yr = ρr cosαr L

.
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Invariance of the method

Two images Y ,Y ′ of the same Lambertian surface
illuminated with different illumination brightnesses:

Yr = cY ′
r

Yr = γZr + εr

cY ′
r = γ′cZ ′

r + ε′r

γ ≈ γ′

I Feature vector: [γ(k)], k = 1 . . .K , k is Gaussian
pyramid level.
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Results – declination angle

Classification performance [%]. Class etalons ware top
lighted images, the others were classified.
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Results – all textures

Estimated probability of correct classification and recall
rate (rrn) for n textures retrieved [%].
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Conclusion

I Single training image per class.
I Invariant to illumination brightness
I Robust to illumination direction
I Illumination direction knowledge not needed.

I Average improvement 4 – 14% to Gabor / Steerable
pyramid based methods.

I Two times faster than the Gabor filter method.
I Recursive analytical solution (CAR model).
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Results – declination angle

method [0o; 30o] [45o; 65o] 75o mean
Gabor 97.6 75.2 24.4 64.9

Steerable 82.5 49.2 27.4 50.2
CAR 84.1 73.3 67.2 73.9

GMRF 92.8 80.5 69.0 79.8

Classification performance [%]. Class etalons are top
lighted images, the others were classified.
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Results – all texture

method P(correct) rr88 rr100

Gabor 71 70 72
Steerable 77 75 77

CAR 81 80 82
GMRF 85 84 85

Estimated probability of correct classification and recall
rate (rrn) for n textures retrieved [%].
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CAR model - parameter estimation I

The task consists in finding the conditional parameters
density p(γ |Y (t−1)) given the known process history
Y (t−1) = {Yt−1,Yt−2, . . . ,Y1,Zt ,Zt−1, . . . ,Z1} and taking its
conditional mean as the textural feature representation.
Assuming normality of the white noise component εt ,
conditional independence between pixels and the
normal-Wishart parameter prior, we have shown that the
conditional mean value is:

E [γ |Y (t−1)] = γ̂t−1 . (1)
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CAR model - parameter estimation II

The following notation is used:

γ̂t−1 = V−1
zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =

(∑t−1
u=1 YuYu

T ∑t−1
u=1 ZuYu

T∑t−1
u=1 ZuYu

T ∑t−1
u=1 ZuZu

T

)
=

(
Ṽyy(t−1) Ṽ T

zy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

and V0 is a positive definite matrix. We assume slowly
changing parameters, consequently these equations were
modified using a constant exponential ”forgetting factor” α
to allow parameter adaptation.
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CAR model - parameter estimation III

It is easy to check also the validity of the following
recursive parameter estimator:

γ̂t = γ̂t−1 +
V−1

zz(t−1)Zt(Yt − γ̂T
t−1Zt)

T

(α2 + Z T
t V−1

zz(t−1)Zt)
. (2)

The solution uses the following notations:

ψ(t) = α2ψ(t − 1) + 1 , (3)
λt−1 = Vyy(t−1) − V T

zy(t−1)V
−1
zz(t−1)Vzy(t−1) . (4)

The determinant |Vzz(t)| as well as λt can be evaluated
recursively too.
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