Illumination Invariant Texture Retrieval

Pavel Vácha, Michal Haindl

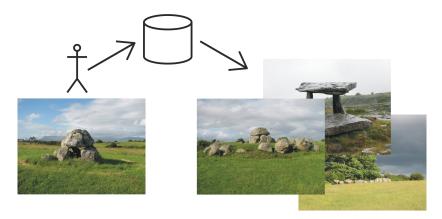
Institute of Information Theory and Automation, AS CR

2nd International Workshop on Data - Algorithms - Decision Making 2006

(日) (四) (문) (문) (문) (문)

Conclusion

Image retrieval



query

result

Introduction	Proposed method	Illumination invariance	Results	Conclusion	References

Outline

- 1. Introduction
- 2. Proposed method
- 3. Illumination invariance
- 4. Results
- 5. Conclusion

What is a texture?

Texture is homogeneous and translation invariant

Possible texture definitions:

- Realisation of random field
- Texture elements placed according to rules
- Information that permits the human eye to differentiate between image regions.

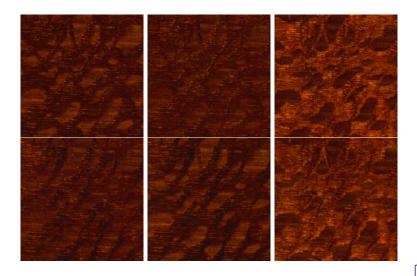
Introduction

iance

Results Conclusion

References

Examples of textures – azimuth



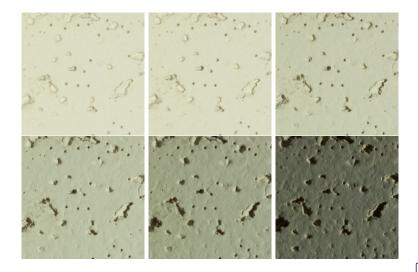
<ロ> <同> <同> <同> <同> <同> <同> <同> <

Introduction

Conclusion

References

Examples of textures – declination



Illumination

Illumination conditions are unknown.

Types of illumination variations:

- Illumination brightness
- Illumination direction
- Illumination spectrum

Illumination

Illumination conditions are unknown.

Types of illumination variations:	our method
Illumination brightness	invariant
Illumination direction	robust
Illumination spectrum	not tested

Results

Proposed method

- 1. Grey scale image
- 2. Image gradients
- 3. Gaussian pyramid with K levels
- 4. Modelling by a Markov random field (MRF) model
- 5. Estimated MRF model parameters are features
- **6.** Feature vectors are compared in L_1 norm

$$Y_r = \gamma Z_r + \epsilon_r$$

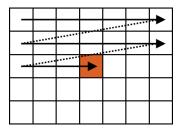
r = (row, column) pixel multiindex $Z_r = [Y_{r-i}^T : \forall i \in I_r]^T$ data vector I_r contextual causal or unilateral neighbourhood

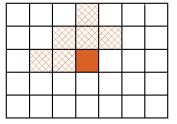
 $\gamma = [A_1, \dots, A_{\eta}]$ unknown parameter matrix with diagonal matrices A_i

 ϵ_r white noise with zero mean and unknown covariance matrix

CAR model – parameter estimation

> Analytical recursive Bayesian estimation of γ





movement

neigbourhood

Local condition density is Gaussian. I_r non-causal symmetrical neighbour index set

The GMRF model has the form of CAR model with the following noise correlation (diagonal σ):

$$E\{\epsilon_{r,i}\epsilon_{r-s,j}\} = \begin{cases} \sigma_j^2 & \text{if } (s) = (0,0) \text{ and } i = j, \\ -\sigma_j^2 a_j^s & \text{if } (s) \in I_r^j \text{ and } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

 $\sigma_j, a_j^s \forall s \in I_r^j$ unknown parameters.

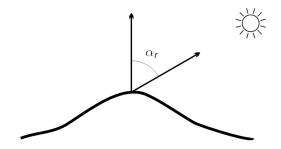
• Pseudo-likelihood estimation of γ .

(日) (雪) (日) (日) (日)

Illumination model

Lambertian law:

 $Y_r = \rho_r \cos \alpha_r L$



ヘロン 人間 とくほど 人間とし 油

Invariance of the method

Two images Y, Y' of the same Lambertian surface illuminated with different illumination brightnesses:

$$Y_r = cY'_r$$

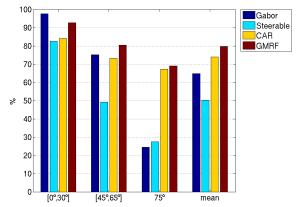
$$Y_r = \gamma Z_r + \epsilon_r$$

$$cY'_r = \gamma' cZ'_r + \epsilon'_r$$

$$\gamma \approx \gamma'$$

Feature vector: $[\gamma^{(k)}], k = 1 \dots K, k$ is Gaussian pyramid level.

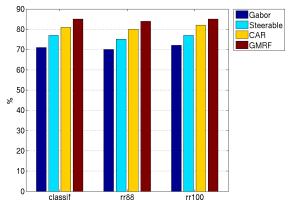
Results – declination angle



Classification performance [%]. Class etalons ware top lighted images, the others were classified.

(日)

Results – all textures



Estimated probability of correct classification and recall rate (rr_n) for *n* textures retrieved [%].

э

(日)

- Single training image per class.
- Invariant to illumination brightness
- Robust to illumination direction
- Illumination direction knowledge not needed.

- Single training image per class.
 - Invariant to illumination brightness
 - Robust to illumination direction
 - Illumination direction knowledge not needed.
 - Average improvement 4 14% to Gabor / Steerable pyramid based methods.
 - Two times faster than the Gabor filter method.
 - Recursive analytical solution (CAR model).

(日) (字) (日) (日) (日)

References

M. Haindl, P. Vácha Illumination Invariant Texture Retrieval

in: *Proc. of the 18th International Conference on Pattern Recognition (ICPR'06)*, pages 276–279, Hong Kong, August 2006.

 J. Meseth and G. Müller and R. Klein, Preserving realism in real-time rendering, in: OpenGL Symposium, pp., 89–96, 2003.

Results

Conclusion

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

References

Results – declination angle

method	[0°; 30°]	[45°; 65°]	75°	mean
Gabor	97.6	75.2	24.4	64.9
Steerable	82.5	49.2	27.4	50.2
CAR	84.1	73.3	67.2	73.9
GMRF	92.8	80.5	69.0	79.8

Classification performance [%]. Class etalons are top lighted images, the others were classified.

Results

Conclusion

・ロン ・四 と ・ 回 と ・ 回 と

3

References

Results – all texture

method	P(correct)	<i>rr</i> ₈₈	<i>rr</i> ₁₀₀
Gabor	71	70	72
Steerable	77	75	77
CAR	81	80	82
GMRF	85	84	85

Estimated probability of correct classification and recall rate (rr_n) for *n* textures retrieved [%].

Results Conclusion

CAR model - parameter estimation I

The task consists in finding the conditional parameters density $p(\gamma | Y^{(t-1)})$ given the known process history $Y^{(t-1)} = \{Y_{t-1}, Y_{t-2}, \dots, Y_1, Z_t, Z_{t-1}, \dots, Z_1\}$ and taking its conditional mean as the textural feature representation. Assuming normality of the white noise component ϵ_t , conditional independence between pixels and the normal-Wishart parameter prior, we have shown that the conditional mean value is:

$$\mathsf{E}[\gamma \mid Y^{(t-1)}] = \hat{\gamma}_{t-1} \quad . \tag{1}$$

CAR model - parameter estimation II

The following notation is used:

$$\hat{\gamma}_{t-1} = V_{zz(t-1)}^{-1} V_{zy(t-1)} ,$$

$$V_{t-1} = \tilde{V}_{t-1} + V_0 ,$$

$$\tilde{V}_{t-1} = \begin{pmatrix} \sum_{u=1}^{t-1} Y_u Y_u^T & \sum_{u=1}^{t-1} Z_u Y_u^T \\ \sum_{u=1}^{t-1} Z_u Y_u^T & \sum_{u=1}^{t-1} Z_u Z_u^T \end{pmatrix} = \begin{pmatrix} \tilde{V}_{yy(t-1)} & \tilde{V}_{zy(t-1)} \\ \tilde{V}_{zy(t-1)} & \tilde{V}_{zz(t-1)} \end{pmatrix}$$

and V_0 is a positive definite matrix. We assume slowly changing parameters, consequently these equations were modified using a constant exponential "forgetting factor" α to allow parameter adaptation.

・ロット (雪)・ (日)・ (日)・

CAR model - parameter estimation III

It is easy to check also the validity of the following recursive parameter estimator:

$$\hat{\gamma}_{t} = \hat{\gamma}_{t-1} + \frac{V_{zz(t-1)}^{-1} Z_{t} (Y_{t} - \hat{\gamma}_{t-1}^{T} Z_{t})^{T}}{(\alpha^{2} + Z_{t}^{T} V_{zz(t-1)}^{-1} Z_{t})} \quad .$$
(2)

The solution uses the following notations:

$$\psi(t) = \alpha^2 \psi(t-1) + 1$$
, (3)

$$\lambda_{t-1} = V_{yy(t-1)} - V_{zy(t-1)}^T V_{zz(t-1)}^{-1} V_{zy(t-1)} .$$
 (4)

The determinant $|V_{zz(t)}|$ as well as λ_t can be evaluated recursively too.

4日下4冊下4日下4日下 日